Hidden Symmetries, Special Geometry and Quaternionic Manifolds

نویسنده

  • B. de Wit
چکیده

The moduli space of the Calabi-Yau three-folds, which play a role as superstring ground states, exhibits the same special geometry that is known from nonlinear sigma models in N = 2 supergravity theories. We discuss the symmetry structure of special real, complex and quaternionic spaces. Maps between these spaces are implemented via dimensional reduction. We analyze the emergence of extra and hidden symmetries. This analysis is then applied to homogeneous special spaces and the implications for the classification of homogeneous quaternionic spaces are discussed. † Invited talk given at the Journées Relativistes ’93, Brussels, 5-7 April 1993; to be published in the proceedings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 04 01 16 1 v 1 2 2 Ja n 20 04 CERN - PH - TH / 2004 - xxx 010 c – Map , very Special Quaternionic

We show that for all very special quaternionic manifolds a different N = 1 reduction exists, defining a Kähler Geometry which is “dual” to the original very special Kähler geometry with metric Gab̄ = −∂a∂b lnV (V = 1 6dabcλaλbλc). The dual metric g = V (G) is Kähler and it also defines a flat potential as the original metric. Such geometries and some of their extensions find applications in Type...

متن کامل

HyperKähler and quaternionic Kähler manifolds with S– symmetries

We study relations between quaternionic Riemannian manifolds admitting different types of symmetries. We show that any hyperKähler manifold admitting hyperKähler potential and triholomorphic action of S1 can be constructed from another hyperKähler manifold (of lower dimention) with an action of S1 which fixes one complex structure and rotates the other two and vice versa. On the other hand, the...

متن کامل

Special geometry, cubic polynomials and homogeneous quaternionic spaces

The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain N = 2 supergravity theories, where dimensional reduction induces a mapping between special real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic f...

متن کامل

Twistors and Black Holes

Motivated by black hole physics in N = 2, D = 4 supergravity, we study the geometry of quaternionic-Kähler manifolds M obtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Kähler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple ...

متن کامل

Introducing Quaternionic Gerbes .

The notion of a quaternionic gerbe is presented as a new way of bundling algebraic structures over a four manifold. The structure groupoid of this fibration is described in some detail. The Euclidean conformal group RSO(4) appears naturally as a (non-commutative) monoidal structure on this groupoid. Using this monoidal structure we indicate the existence of a canonical quaternionic gerbe associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993